Math 4300 - Homework # 4 Betweenness

- 1. In the Euclidean plane, let A = (-1, -2), B = (2, 1), and C = (0, -1).
 - (a) Determine if A, B, C are collinear or not. Draw a picture.
 - (b) If the points are collinear, Determine if A B C, A C B, or B A C.
 - (c) Determine if B C A.
- 2. In the hyperbolic plane, let A=(1,2), B=(3,4) and $C=(4,\sqrt{19})$.
 - (a) Determine if A, B, C are collinear or not. Draw a picture.
 - (b) If the points are collinear, Determine if A-B-C, A-C-B, or B-A-C.
 - (c) Determine if B C A.
- 3. In the hyperbolic plane, let A = (1, 2), B = (1, 4) and C = (1, 5).
 - (a) Determine if A, B, C are collinear or not. Draw a picture.
 - (b) If the points are collinear, Determine if A-B-C, A-C-B, or B-A-C.
- 4. Let $(\mathscr{P},\mathscr{L},d)$ be a metric geometry. Let $A,B\in\mathscr{P}$ with $A\neq B$. Let $C\in \overleftrightarrow{AB}$. Prove that one and only one of the following can be true: C-A-B or C=A or A-C-B or C=B or A-B-C.
- 5. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let ℓ be a line and A, B, C be distinct points on ℓ . Prove that either A B C or A C B or B A C.

- 6. Let $(\mathcal{P}, \mathcal{L}, d)$ be a metric geometry. Let A, B, C, D be points from \mathcal{P} . Prove that if A B C and B C D, then A B D and A C D.
- 7. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, C, D be points from \mathscr{P} . Assume that $D \neq B$. Prove that if A C D and A C B, then A D B or A B D.
- 8. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, C, D be points from \mathscr{P} . Prove that if A D C and A C B, then A D B.
- 9. Let $(\mathscr{P}, \mathscr{L}, d)$ be a metric geometry. Let A, B, P, Q be points from \mathscr{P} . Prove that if A Q B and A P B and P C Q, then A C B.
- 10. Consider the Euclidean plane $\mathscr{E} = (\mathbb{R}^2, \mathscr{L}_E, d_E)$. Let $A, B, C \in \mathbb{R}^2$ be distinct points. Prove that A B C if and only if there exists a real number t with 0 < t < 1 and B = A + t(C A).